Diferenças entre edições de "Integral de linha"
Saltar para a navegação
Saltar para a pesquisa
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...") |
(Sem diferenças)
|
Revisão das 12h03min de 1 de setembro de 2016
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Calculo diferencial e integral 2
- ANO: 1
- LINGUA: pt
- AUTOR: Equipa Calculo diferencial e integral 2
- MATERIA PRINCIPAL:
- DESCRICAO:
- DIFICULDADE: easy
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 30 mn
- PALAVRAS CHAVE:
Sejam a função escalar \(f\)\(\left(\begin{array}{c}x\\y\\\end{array}\right)\)=\(-5x-4y\) e a curva parametrizada por \( \gamma = \)\(\left(\begin{array}{c}0\\-4t\\\end{array}\right)\). A representação geométrica da imagem de \( \gamma \) com \(t\text{$\in$[}-1,1]\) encontra-se na figura abaixo.
O integral de \(f\) com respeito ao arco da curva parametrizada por \( \gamma \) em \([-1,1]\) é igual a:
A)\(0\)
B)\(8\)
C)\(16\)
D)\(-16\)
Para obter o zip que contém as instâncias deste exercício clique aqui(integralLinha)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt