Diferenças entre edições de "Mudança da ordem de integração"
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...") |
(Sem diferenças)
|
Revisão das 13h48min de 2 de setembro de 2016
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Calculo diferencial e integral 2
- ANO: 1
- LINGUA: pt
- AUTOR: Equipa Calculo diferencial e integral 2
- MATERIA PRINCIPAL:
- DESCRICAO:
- DIFICULDADE: easy
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 30 mn
- PALAVRAS CHAVE:
Sendo \(f: \mathbb{R^2} \to \mathbb{R} \) uma função positiva e integrável, o integral iterado \(\int_0^1\int_{\sqrt{1-x^2}}^1\text{f}\left(\begin{array}{c}x\\y\\\end{array}\right)\text{d}\text{y}\text{d}\text{x}\text{+}\int_1^2\int_{\sqrt{1-(x-2)^2}}^1\text{f}\left(\begin{array}{c}x\\y\\\end{array}\right)\text{d}\text{y}\text{d}\text{x}\) pode também ser dado, com ou sem mudança da ordem de integração por:
A)\(\int_0^1\int_{\sqrt{1-y^2}}^{2-\sqrt{1-y^2}}\text{f}\left(\begin{array}{c}x\\y\\\end{array}\right)\text{d}\text{x}\text{d}\text{y}\)
B)\(\int_0^1\int_{\sqrt{1-y^2}}^{2-\sqrt{1-y^2}}\text{f}\left(\begin{array}{c}x\\y\\\end{array}\right)\text{d}\text{y}\text{d}\text{x}\)
C)\(\int_1^0\int_{\sqrt{1-y^2}}^0\text{f}\left(\begin{array}{c}x\\y\\\end{array}\right)\text{d}\text{x}\text{d}\text{y}\text{+}\int_0^1\int_{2-\sqrt{1-y^2}}^2\text{f}\left(\begin{array}{c}x\\y\\\end{array}\right)\text{d}\text{x}\text{d}\text{y}\)
D)\(\int_1^0\int_0^{\sqrt{1-y^2}}\text{f}\left(\begin{array}{c}x\\y\\\end{array}\right)\text{d}\text{x}\text{d}\text{y}\text{+}\int_1^0\int_2^{2-\sqrt{1-y^2}}\text{f}\left(\begin{array}{c}x\\y\\\end{array}\right)\text{d}\text{x}\text{d}\text{y}\)
Para obter o zip que contém as instâncias deste exercício clique aqui(trocaOrdem)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt