Representação numa base dum plano de \(R^3\)
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Álgebra Linear
- ANO: 1
- LINGUA: pt
- AUTOR: Equipa Álgebra Linear
- MATERIA PRINCIPAL: Espaços lineares e transformações lineares
- DESCRICAO: representacao base em R3
- DIFICULDADE: easy
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 30 mn
- PALAVRAS CHAVE:
Seja \(W = \mathscr{L} (B) \),com \(B=\)\(\left\{\left(\begin{array}{c}2\\-1\\-2\\\end{array}\right),\left(\begin{array}{c}1\\-4\\-2\\\end{array}\right)\right\}\) uma base do subespaço \(W\) de \( \mathbb{R}^3 \). Se \( [u]_B=\)\(\left(\begin{array}{c}0\\-4\\\end{array}\right)\) é o vector de coordenadas de \(u\) na base \(B\), o vector \(u\) é:
A)\(\left(\begin{array}{c}-4\\16\\8\\\end{array}\right)\), B)\(\left(\begin{array}{c}0\\20\\7\\\end{array}\right)\), C)\(\left(\begin{array}{c}-4\\16\\-4\\\end{array}\right)\), D)\(\left(\begin{array}{c}-4\\17\\12\\\end{array}\right)\)
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt