Decomposição espetral 4x4
Saltar para a navegação
Saltar para a pesquisa
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Álgebra Linear
- ANO: 1
- LINGUA: pt
- AUTOR: Ana Moura Santos e Miguel Dziergwa
- MATERIA PRINCIPAL: Diagonalização de matrizes
- DESCRICAO: Decomposição espetral para uma matriz 4x4
- DIFICULDADE: ***
- TEMPO MEDIO DE RESOLUCAO: 10 mn
- TEMPO MAXIMO DE RESOLUCAO: 20 mn
- PALAVRAS CHAVE: diagonalização ortogonal, valores próprios, vetores próprios, base ortonormal, espaços próprios, matriz de projeção
Considere na decomposição espetral da matriz \(A=\)\(\left(\begin{array}{cccc}14&8&1&0\\8&5&0&1\\0&0&8&0\\0&0&0&3\\\end{array}\right)\) os primeiros dois termos de modo a que \(A \simeq \lambda_1 \)\(\pmb{u_1}\)\(\pmb{u_1^T}\) + \( \lambda_2 \)\(\pmb{u_2}\)\(\pmb{u_2^T}\), em que \( \lambda_1 \) e \( \lambda_2 \) são os valores próprios de maior valor absoluto ordenados por ordem decrescente. Então \( \lambda_2 \) com pelo menos uma casa decimal é igual a:
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt