Decomposição espetral 4x4

Fonte: My Solutions
Revisão em 14h03min de 30 de abril de 2018 por Ist178052 (discussão | contribs)
Saltar para a navegação Saltar para a pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Moura Santos e Miguel Dziergwa
  • MATERIA PRINCIPAL: Diagonalização de matrizes
  • DESCRICAO: Decomposição espetral para uma matriz 4x4
  • DIFICULDADE: ***
  • TEMPO MEDIO DE RESOLUCAO: 10 mn
  • TEMPO MAXIMO DE RESOLUCAO: 20 mn
  • PALAVRAS CHAVE: diagonalização ortogonal, valores próprios, vetores próprios, base ortonormal, espaços próprios, matriz de projeção

Considere na decomposição espetral da matriz \(A=\)\(\left(\begin{array}{cccc}14&8&1&0\\8&5&0&1\\0&0&8&0\\0&0&0&3\\\end{array}\right)\) os primeiros dois termos de modo a que \(A \simeq \lambda_1 \)\(\pmb{u_1}\)\(\pmb{u_1^T}\) + \( \lambda_2 \)\(\pmb{u_2}\)\(\pmb{u_2^T}\), em que \( \lambda_1 \) e \( \lambda_2 \) são os valores próprios de maior valor absoluto ordenados por ordem decrescente. Então \( \lambda_2 \) com pelo menos uma casa decimal é igual a:

Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt