Diferenças entre edições de "Matriz de rotação com escala"
Saltar para a navegação
Saltar para a pesquisa
Linha 20: | Linha 20: | ||
− | Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/ | + | Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/api/drive/file/851498741291711/download] |
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt | Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt |
Edição atual desde as 16h35min de 5 de outubro de 2017
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Álgebra Linear
- ANO: 1
- LINGUA: pt
- AUTOR: Ana Moura Santos e Miguel Dziergwa
- MATERIA PRINCIPAL: Valores e vetores próprios
- DESCRICAO: matriz de rotação com escala
- DIFICULDADE: ***
- TEMPO MEDIO DE RESOLUCAO: 20 mn
- TEMPO MAXIMO DE RESOLUCAO: 35 mn
- PALAVRAS CHAVE:
Seja a matriz \(\left(\begin{array}{cc}3.91429&3.57143\\-4.14286&-3.51429\\\end{array}\right)\) que representa a composição de uma rotação num ângulo \(\varphi\) com um escalonamento em \(k\). Determine com a aproximação de 2 casas decimais o módulo do menor ângulo de rotação \(\varphi\) (em graus).
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt