Diferenças entre edições de "Raízes de polinómios"
Saltar para a navegação
Saltar para a pesquisa
(Há 4 edições intermédias do mesmo utilizador que não estão a ser apresentadas) | |||
Linha 8: | Linha 8: | ||
*LINGUA: pt | *LINGUA: pt | ||
*AUTOR: Rui Miguel Saramago | *AUTOR: Rui Miguel Saramago | ||
− | *MATERIA PRINCIPAL: | + | *MATERIA PRINCIPAL: Raízes de polinómios |
− | *DESCRICAO: | + | *DESCRICAO: Identificação de raízes de um dado polinómio |
− | *DIFICULDADE: | + | *DIFICULDADE: * |
− | *TEMPO MEDIO DE RESOLUCAO: mn | + | *TEMPO MEDIO DE RESOLUCAO: 10 mn |
− | *TEMPO MAXIMO DE RESOLUCAO: mn | + | *TEMPO MAXIMO DE RESOLUCAO: 15 mn |
− | *PALAVRAS CHAVE: | + | *PALAVRAS CHAVE: polinómio, raiz |
</div> | </div> | ||
</div> | </div> | ||
Linha 24: | Linha 24: | ||
− | A) \(\sqrt{3} | + | A) \(\frac{\sqrt{3}}{2} + i\frac{1}{2} \) é uma raiz de P |
− | B) \(\sqrt{ | + | B) \(-\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \) é uma raiz de P |
− | C) \(\sqrt{ | + | C) \(-\sqrt{2} - i\sqrt{2} \) é uma raiz de 2P. |
D) 1 é uma raiz de P. | D) 1 é uma raiz de P. | ||
− | + | E) Nenhuma | |
− | |||
− | |||
− |
Edição atual desde as 15h47min de 5 de maio de 2020
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Análise Complexa e Equações Diferenciais
- ANO: 2
- LINGUA: pt
- AUTOR: Rui Miguel Saramago
- MATERIA PRINCIPAL: Raízes de polinómios
- DESCRICAO: Identificação de raízes de um dado polinómio
- DIFICULDADE: *
- TEMPO MEDIO DE RESOLUCAO: 10 mn
- TEMPO MAXIMO DE RESOLUCAO: 15 mn
- PALAVRAS CHAVE: polinómio, raiz
Seja P um polinómio da forma z12−α, com α∈C, tal que √3−i é uma raiz de 2P.
Seleccione todas as afirmações correctas.
A) √32+i12 é uma raiz de P
B) −1√2+i1√2 é uma raiz de P
C) −√2−i√2 é uma raiz de 2P.
D) 1 é uma raiz de P.
E) Nenhuma