Diferenças entre edições de "Probabilidade e estatística"

Fonte: My Solutions
Saltar para a navegação Saltar para a pesquisa
 
(Há 10 edições intermédias do mesmo utilizador que não estão a ser apresentadas)
Linha 1: Linha 1:
 
=Probabilidades=
 
=Probabilidades=
 
==Conceitos básicos==
 
==Conceitos básicos==
 +
 +
*[[Propriedades]]
 +
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 5 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 15 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 +
Numa dada experiência aleatória, sejam \( A \) e \( B\) dois acontecimentos independentes, tais que \( P(A)=P(B) = 1/2 \). Calcule \( P \left[A| (A\cup B) \right] \).
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 5 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 15 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 +
Considere dois acontecimentos \( B \) e \( C\), com probabilidades não  nulas, associados à mesma experiência aleatória, tais que:
 +
\(
 +
P(C)=0.3, \; P(B|C)=0.4, \; P(\bar B | \bar C)=0.8
 +
\)
 +
Calcule \( P(C|B) \).
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
Linha 20: Linha 67:
 
</div>
 
</div>
  
Considere dois acontecimentos arbitrários, \( A \) e \( B \), associados à mesma experiência aleatória. Será que a dupla desigualdade \( P(A)+P(B)-1\leq P(A\cup B)\leq P(A)+P(B) \) é necessariamente verdadeira?
+
Uma fábrica produz \( \textit{chips} \) em 5 linhas de produção que são enviados para o mercado em lotes. Todas as linhas produzem a mesma quantidade de lotes e cada lote contém apenas unidades produzidas por uma única linha. Em condições normais, cada lote produzido contém 2 \( \% \) de \( \textit{chips} \) defeituosos. Todavia, num dado mês a ocorrência de problemas mecânicos na linha \( L_1 \) fez com que esta passasse a produzir lotes com 5\( \% \) de \( \textit{chips} \) defeituosos durante esse período.
 +
 
 +
# Um \( \textit{chip} \) retirado ao acaso de um lote produzido nesse mês revelou-se defeituoso. Qual a probabilidade de esse \( \textit{chip} \) ter sido produzido pela linha \( L_1\)?
 +
# Um cliente, que recebeu um lote produzido naquele mês, decide testar 3 \( \textit{chips} \) retirados ao acaso e com reposição do lote. Qual a probabilidade de encontrar apenas um \( \textit{chip} \) defeituoso?
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Um parque de estacionamento frente a um edifício de habitação tem alguns lugares reservados para a largada de crianças, deficientes e idosos ou para efectuar descargas rápidas.
 +
Os utilizadores do parque de estacionamento foram classificados em 3 categorias: moradores-proprietários, moradores-inquilinos e visitantes.
 +
De acordo com um estudo sobre a ocupação dos lugares reservados, as probabilidades de um ocupante dos mesmos ser de cada uma das três categorias são 0.4, 0.5 e 0.1, respectivamente.
 +
Considere que o uso indevido dos lugares reservados por utilizadores das categorias moradores-proprietários, moradores-inquilinos e visitantes ocorre com probabilidades iguais a 0.2, 0.3 e 0.8, respectivamente.
 +
 
 +
# Qual  é a probabilidade de um utilizador do parque de estacionamento fazer uso indevido dos lugares reservados?
 +
# Ao encontrar um automóvel estacionado indevidamente num dos lugares reservados, qual é a probabilidade de ele ser de um visitante?
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Uma fábrica possui 3 linhas de produção de lâmpadas \( (A \), \( B \) e \( C ) \) que são responsáveis por \(15\%\), \(35\%\) e \(50\%\) da produção global.
 +
Suponha que a probabilidade de uma lâmpada ser defeituosa sabendo que foi produzida por cada uma dessas linhas de produção é 0.01, 0.05 e 0.02, respectivamente, para \(A\), \(B\) e \(C\).
 +
 
 +
# Se for escolhida ao acaso uma lâmpada da produção global, qual é a probabilidade dessa lâmpada ser defeituosa?
 +
# Se uma lâmpada  é considerada não defeituosa, qual é a probabilidade de ser proveniente da linha de produção \(A\)?
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Um cadeia de lojas de equipamento de áudio e vídeo comercializa somente 3 marcas diferentes de gravadores de DVD.
 +
\( 50\%\) das vendas de gravadores de DVD dizem respeito à marca A, (a menos cara das três), \(30\%\) à marca B e \(20\%\) à marca C.
 +
 
 +
Os fabricantes de qualquer das três marcas oferecem garantia de dois anos. Mais, é sabido que \( 25\%\) dos gravadores da marca A requer reparação dentro da garantia, ao passo que as correspondentes percentagens são de \(20\%\) e \(10\%\) para as marcas B e C, respectivamente.
 +
 
 +
# Obtenha a probabilidade de um cliente requerer reparação dentro do prazo de garantia do gravador que adquiriu.
 +
# Caso um cliente requeira uma reparação dentro do prazo de garantia, qual a probabilidade de ele não ter adquirido um gravador da marca A?
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Numa fábrica existem três máquinas distintas ( \( A \), \(B \) e \( C \)) que produzem \(\textit{chips}\). Estas máquinas são responsáveis pela produção de
 +
\( 25\% \), \(35\% \) e \( 40\% \) dos \( \textit{chips} \), respectivamente. Assuma que \( 5\% \) dos \( \textit{chips} \) produzidos pela máquina \( A \) são defeituosos
 +
e que as correspondentes percentagens  para as máquinas \( B \) e \( C \) são de \( 4\% \) e \( 2\% \), respectivamente.
 +
 
 +
# Sabendo que um \( \textit{chip} \) não é defeituoso, qual é a probabilidade de ter sido produzido pela máquina \( A \) ?
 +
# Para um \( \textit{chip} \) seleccionado ao acaso, considere os seguintes eventos: ``\( \textit{chip} \) foi produzido pela máquina \( A \)'' e ``\( \textit{chip} \) é defeituoso''.
 +
Serão estes dois eventos independentes? Justifique.
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Uma empresa de segurança classifica as habitações de uma zona residencial, relativamente ao risco de assalto, em três grupos distintos: elevado, médio ou baixo. O primeiro grupo engloba \( 20\% \) das habitações e o segundo \( 40\% \). De acordo com registos efectuados, sabe-se que:
 +
\( 30\% \) das habitações do primeiro grupo já foram assaltadas;
 +
\( 90\% \) das habitações do segundo grupo nunca foram assaltadas;
 +
e apenas \( 1\% \) das habitações do último grupo foram assaltadas.
 +
 
 +
# Qual a percentagem de habitações já assaltadas nessa zona residencial?
 +
# Sabendo que uma habitação dessa zona residencial nunca foi assaltada, qual a probabilidade de pertencer ao segundo ou ao terceiro grupo?
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
As chamadas de telemóveis de determinada rede sem fios podem ser longas com probabilidade 0.4 ou curtas com probabilidade 0.6.
 +
O \( \textit{handoff} \) (ou \( \textit{handover} \) ) é o procedimento empregue em redes sem fio para tratar a transição de uma unidade móvel de uma célula para outra de forma transparente ao utilizador.
 +
Durante uma chamada longa, feita nessa rede, podem ocorrer zero \( \textit{handoffs} \), um \( \textit{handoff} \) ou pelo menos dois \( \textit{handoffs} \), com probabilidades 0.25, 0.25 e 0.5, respectivamente;
 +
mas se uma chamada é curta, as ocorrências de zero, um ou pelo menos dois \( \textit{handoffs} \) possuem probabilidades \( \frac{2}{3} \), \( \frac{1}{6} \) e \( \frac{1}{6} \), respectivamente.
 +
# Qual a probabilidade de não ocorrer \( \textit{handoff} \) durante uma chamada nessa rede?
 +
# Calcule a probabilidade de uma chamada ser longa, sabendo que durante essa chamada ocorreram pelo menos dois \( \textit{handoffs}\).
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 5 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Um novo teste de diagnóstico de uma doença infecciosa fornece resultados correctos \( 99\% \) das vezes quando aplicado a indivíduos infectados e apenas \( 90\% \) das vezes quando aplicado a indivíduos não infectados. Sabendo que \( 0.5\% \) dos indivíduos da população estão infectados e que o teste aplicado a um indivíduo, escolhido ao acaso da população, indicou que ele está infectado, calcule a probabilidade desse indivíduo estar efectivamente infectado.
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
A produção de peças de uma empresa provém de 3 máquinas, \( M_1\), \( M_2 \) e \( M_3 \). As máquinas \(M_1\) e \( M_2 \) são responsáveis, respectivamente, por \( 50\%\) e \( 30\% \)  da produção total. Sabe-se que \( 5\% \) das peças produzidas pela empresa são defeituosas e que \( 60\% \) e \( 30\% \) das peças defeituosas são produzidas, respectivamente, pelas máquinas \( M_1 \) e \( M_2\).
 +
# Calcule a probabilidade de uma peça extraída ao acaso da produção de \( M_1 \) ser defeituosa.
 +
# Qual é a probabilidade de uma peça, extraída ao acaso da produção da empresa, ter sido produzida por \( M_3 \) e não ser defeituosa?
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Um sistema de extracção é constituído por duas bombas idênticas, \( B_1 \) e \( B_2\). A empresa responsável pelo fabrico destas bombas de extracção adiantou que, em sistemas deste tipo, a probabilidade de falhar pelo menos uma das duas bombas no período de um ano é 0.07 e que a probabilidade de ambas falharem nesse mesmo período é 0.01.
 +
 
 +
# Calcule a probabilidade de \( B_1\) falhar no período de um ano.
 +
# Determine a probabilidade de \( B_2 \) falhar no período de um ano condicional a que \( B_1\) falhe nesse período.
 +
# Indique, justificando, se as bombas de extracção falham de modo independente no período de um ano.
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Um jardineiro efectua uma sementeira de um determinado número de sementes calibradas de uma espécie de plantas. Por experiência, o jardineiro sabe que cada semente não germina com probabilidade 0.2, independentemente do que acontece com as restantes sementes.
 +
 
 +
# Se o jardineiro usar 20 sementes, qual é a probabilidade de menos de 4 não germinarem?
 +
# Qual é o menor número de sementes que o jardineiro deve semear para que, com probabilidade superior a \( 50\%\), pelo menos 3 sementes não germinem?
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
De uma caixa, contendo 2 bolas azuis e 3 bolas vermelhas, retira-se ao acaso uma bola e coloca-se numa segunda caixa que já contém 4 bolas azuis e 2 bolas vermelhas. De seguida, extrai-se ao acaso uma bola da segunda caixa.
 +
 
 +
# Qual é a probabilidade de extrair bolas da mesma cor das duas caixas?
 +
# Determine a probabilidade de a bola extraída da segunda caixa ser vermelha.
 +
# Se a bola extraída da segunda caixa é vermelha, qual é a probabilidade de se ter extraído da primeira caixa uma bola dessa mesma cor?
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 15 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 30 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Um sistema de detecção de utilizações fraudulentas de cartões de crédito regista, em cada dia e para cada cartão, o número de concelhos em que cada
 +
cartão é usado e se movimenta quantias elevadas. Dados históricos indicam que \( 1\%\) das utilizações diárias são fraudulentas e que, de entre essas, em \( 30\% \)
 +
dos casos são movimentadas quantias elevadas e o cartão é utilizado em mais do que dois concelhos no mesmo dia. A probabilidade deste último acontecimento baixa para \( 1\%\) entre as
 +
utilizações legítimas.
 +
 
 +
# Calcule a probabilidade de, num qualquer dia, um cartão de crédito ter sido usado fraudulentamente sabendo que foi utilizado em mais do que dois concelhos e que movimentou quantias elevadas.
 +
# Determine a probabilidade de ter ocorrido uma utilização fraudulenta de um cartão que não foi usado em mais do que dois concelhos ou não movimentou quantias elevadas num certo dia. Compare o resultado obtido com o da alínea anterior e comente.
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 5 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 15 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
O fornecedor de sementes \( F_1\) atesta que a probabilidade de germinação de cada uma das suas sementes é 0.95, enquanto que o fornecedor \( F_2\) garante que a probabilidade de cada uma das suas sementes não germinar é 0.1. Um agricultor adquiriu um pacote de sementes de \( F_1 \) e outro de \( F_2 \), contendo 50 e 30 sementes, respectivamente. Tendo havido germinação de uma semente, escolhida ao acaso entre as compradas pelo agricultor, qual é a probabilidade de ela ser proveniente do fornecedor \( F_2\)?
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 5 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 15 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
O controlo de qualidade de um fabricante de chips electrónicos é feito através de um teste que identifica correctamente os produtos defeituosos em \( 99\% \) dos casos, mas que também indica como
 +
defeituosos \( 5\% \) dos produtos em boas condições. Admitindo que \( 1\% \) dos chips fabricados têm defeitos e que o teste  aplicado a um chip, escolhido ao acaso da produção,  indicou o chip como sendo defeituoso, calcule a probabilidade de esse chip estar em boas condições.
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 5 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 15 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Um cliente de uma dada empresa combina a compra de uma remessa de 30 parafusos com a condição de devolvê-la se ao testar uma amostra de 3 parafusos, escolhidos ao acaso e sem reposição, não encontrar pelo menos dois em boas condições. É sabido que na encomenda remetida vão efectivamente 25 parafusos em boas condições, sendo os restantes defeituosos.
 +
 
 +
# Calcule a probabilidade de a encomenda ser devolvida e obtenha o desvio padrão do número de parafusos defeituosos existentes na amostra testada.
 +
# Determine a probabilidade de o \( 2^o \) parafuso extraído ser defeituoso e  verifique se esse valor coincide com o que se obteria caso a seleção da amostra de parafusos fosse feita com reposição.
 +
 
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:420px">
 +
'''Metadata'''
 +
<div class="mw-collapsible-content">
 +
*CONTEXTO : Primeiro ciclo universitário
 +
*AREA: Matemática
 +
*DISCIPLINA: Probabilidades e Estatística
 +
*ANO: 2
 +
*LINGUA: pt
 +
*AUTOR: Equipa de Probabilidades e Estatística
 +
*MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
 +
*DESCRICAO: Conceitos Básicos de Probabilidades
 +
*DIFICULDADE: *
 +
*TEMPO MEDIO DE RESOLUCAO: 5 min
 +
*TEMPO MAXIMO DE RESOLUCAO: 15 min
 +
*PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística
 +
</div>
 +
</div>
 +
 
 +
Uma empresa financeira desenvolveu um modelo de forma a prever, sob determinadas  condições macroeconómicas, a ocorrência de recessões económicas. O modelo faz previsões correctas quando ocorre recessão em \( 80\% \) dos casos, mas faz previsões incorrectas quando não ocorre recessão em \( 10\% \) dos casos. Dados históricos mostram que a probabilidade de ocorrência de recessão económica, nas condições de uso do modelo, é de 0.2. Supondo verificadas as condições de uso do modelo, calcule:
 +
 
 +
# A probabilidade de ocorrer recessão económica, sabendo que o modelo prevê a ocorrência desta.
 +
# A probabilidade de ocorrer recessão económica ou o modelo prever a ocorrência de recessão económica.
  
 
==Variáveis aleatórias==
 
==Variáveis aleatórias==

Edição atual desde as 18h12min de 15 de janeiro de 2016

Probabilidades

Conceitos básicos


Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 5 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Numa dada experiência aleatória, sejam \( A \) e \( B\) dois acontecimentos independentes, tais que \( P(A)=P(B) = 1/2 \). Calcule \( P \left[A| (A\cup B) \right] \).

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 5 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Considere dois acontecimentos \( B \) e \( C\), com probabilidades não nulas, associados à mesma experiência aleatória, tais que: \( P(C)=0.3, \; P(B|C)=0.4, \; P(\bar B | \bar C)=0.8 \) Calcule \( P(C|B) \).

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Uma fábrica produz \( \textit{chips} \) em 5 linhas de produção que são enviados para o mercado em lotes. Todas as linhas produzem a mesma quantidade de lotes e cada lote contém apenas unidades produzidas por uma única linha. Em condições normais, cada lote produzido contém 2 \( \% \) de \( \textit{chips} \) defeituosos. Todavia, num dado mês a ocorrência de problemas mecânicos na linha \( L_1 \) fez com que esta passasse a produzir lotes com 5\( \% \) de \( \textit{chips} \) defeituosos durante esse período.

  1. Um \( \textit{chip} \) retirado ao acaso de um lote produzido nesse mês revelou-se defeituoso. Qual a probabilidade de esse \( \textit{chip} \) ter sido produzido pela linha \( L_1\)?
  2. Um cliente, que recebeu um lote produzido naquele mês, decide testar 3 \( \textit{chips} \) retirados ao acaso e com reposição do lote. Qual a probabilidade de encontrar apenas um \( \textit{chip} \) defeituoso?

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Um parque de estacionamento frente a um edifício de habitação tem alguns lugares reservados para a largada de crianças, deficientes e idosos ou para efectuar descargas rápidas. Os utilizadores do parque de estacionamento foram classificados em 3 categorias: moradores-proprietários, moradores-inquilinos e visitantes. De acordo com um estudo sobre a ocupação dos lugares reservados, as probabilidades de um ocupante dos mesmos ser de cada uma das três categorias são 0.4, 0.5 e 0.1, respectivamente. Considere que o uso indevido dos lugares reservados por utilizadores das categorias moradores-proprietários, moradores-inquilinos e visitantes ocorre com probabilidades iguais a 0.2, 0.3 e 0.8, respectivamente.

  1. Qual é a probabilidade de um utilizador do parque de estacionamento fazer uso indevido dos lugares reservados?
  2. Ao encontrar um automóvel estacionado indevidamente num dos lugares reservados, qual é a probabilidade de ele ser de um visitante?

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Uma fábrica possui 3 linhas de produção de lâmpadas \( (A \), \( B \) e \( C ) \) que são responsáveis por \(15\%\), \(35\%\) e \(50\%\) da produção global. Suponha que a probabilidade de uma lâmpada ser defeituosa sabendo que foi produzida por cada uma dessas linhas de produção é 0.01, 0.05 e 0.02, respectivamente, para \(A\), \(B\) e \(C\).

  1. Se for escolhida ao acaso uma lâmpada da produção global, qual é a probabilidade dessa lâmpada ser defeituosa?
  2. Se uma lâmpada é considerada não defeituosa, qual é a probabilidade de ser proveniente da linha de produção \(A\)?

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Um cadeia de lojas de equipamento de áudio e vídeo comercializa somente 3 marcas diferentes de gravadores de DVD. \( 50\%\) das vendas de gravadores de DVD dizem respeito à marca A, (a menos cara das três), \(30\%\) à marca B e \(20\%\) à marca C.

Os fabricantes de qualquer das três marcas oferecem garantia de dois anos. Mais, é sabido que \( 25\%\) dos gravadores da marca A requer reparação dentro da garantia, ao passo que as correspondentes percentagens são de \(20\%\) e \(10\%\) para as marcas B e C, respectivamente.

  1. Obtenha a probabilidade de um cliente requerer reparação dentro do prazo de garantia do gravador que adquiriu.
  2. Caso um cliente requeira uma reparação dentro do prazo de garantia, qual a probabilidade de ele não ter adquirido um gravador da marca A?

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Numa fábrica existem três máquinas distintas ( \( A \), \(B \) e \( C \)) que produzem \(\textit{chips}\). Estas máquinas são responsáveis pela produção de \( 25\% \), \(35\% \) e \( 40\% \) dos \( \textit{chips} \), respectivamente. Assuma que \( 5\% \) dos \( \textit{chips} \) produzidos pela máquina \( A \) são defeituosos e que as correspondentes percentagens para as máquinas \( B \) e \( C \) são de \( 4\% \) e \( 2\% \), respectivamente.

  1. Sabendo que um \( \textit{chip} \) não é defeituoso, qual é a probabilidade de ter sido produzido pela máquina \( A \) ?
  2. Para um \( \textit{chip} \) seleccionado ao acaso, considere os seguintes eventos: ``\( \textit{chip} \) foi produzido pela máquina \( A \) e ``\( \textit{chip} \) é defeituoso.

Serão estes dois eventos independentes? Justifique.

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Uma empresa de segurança classifica as habitações de uma zona residencial, relativamente ao risco de assalto, em três grupos distintos: elevado, médio ou baixo. O primeiro grupo engloba \( 20\% \) das habitações e o segundo \( 40\% \). De acordo com registos efectuados, sabe-se que: \( 30\% \) das habitações do primeiro grupo já foram assaltadas; \( 90\% \) das habitações do segundo grupo nunca foram assaltadas; e apenas \( 1\% \) das habitações do último grupo foram assaltadas.

  1. Qual a percentagem de habitações já assaltadas nessa zona residencial?
  2. Sabendo que uma habitação dessa zona residencial nunca foi assaltada, qual a probabilidade de pertencer ao segundo ou ao terceiro grupo?

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

As chamadas de telemóveis de determinada rede sem fios podem ser longas com probabilidade 0.4 ou curtas com probabilidade 0.6. O \( \textit{handoff} \) (ou \( \textit{handover} \) ) é o procedimento empregue em redes sem fio para tratar a transição de uma unidade móvel de uma célula para outra de forma transparente ao utilizador. Durante uma chamada longa, feita nessa rede, podem ocorrer zero \( \textit{handoffs} \), um \( \textit{handoff} \) ou pelo menos dois \( \textit{handoffs} \), com probabilidades 0.25, 0.25 e 0.5, respectivamente; mas se uma chamada é curta, as ocorrências de zero, um ou pelo menos dois \( \textit{handoffs} \) possuem probabilidades \( \frac{2}{3} \), \( \frac{1}{6} \) e \( \frac{1}{6} \), respectivamente.

  1. Qual a probabilidade de não ocorrer \( \textit{handoff} \) durante uma chamada nessa rede?
  2. Calcule a probabilidade de uma chamada ser longa, sabendo que durante essa chamada ocorreram pelo menos dois \( \textit{handoffs}\).

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 5 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Um novo teste de diagnóstico de uma doença infecciosa fornece resultados correctos \( 99\% \) das vezes quando aplicado a indivíduos infectados e apenas \( 90\% \) das vezes quando aplicado a indivíduos não infectados. Sabendo que \( 0.5\% \) dos indivíduos da população estão infectados e que o teste aplicado a um indivíduo, escolhido ao acaso da população, indicou que ele está infectado, calcule a probabilidade desse indivíduo estar efectivamente infectado.

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

A produção de peças de uma empresa provém de 3 máquinas, \( M_1\), \( M_2 \) e \( M_3 \). As máquinas \(M_1\) e \( M_2 \) são responsáveis, respectivamente, por \( 50\%\) e \( 30\% \) da produção total. Sabe-se que \( 5\% \) das peças produzidas pela empresa são defeituosas e que \( 60\% \) e \( 30\% \) das peças defeituosas são produzidas, respectivamente, pelas máquinas \( M_1 \) e \( M_2\).

  1. Calcule a probabilidade de uma peça extraída ao acaso da produção de \( M_1 \) ser defeituosa.
  2. Qual é a probabilidade de uma peça, extraída ao acaso da produção da empresa, ter sido produzida por \( M_3 \) e não ser defeituosa?

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Um sistema de extracção é constituído por duas bombas idênticas, \( B_1 \) e \( B_2\). A empresa responsável pelo fabrico destas bombas de extracção adiantou que, em sistemas deste tipo, a probabilidade de falhar pelo menos uma das duas bombas no período de um ano é 0.07 e que a probabilidade de ambas falharem nesse mesmo período é 0.01.

  1. Calcule a probabilidade de \( B_1\) falhar no período de um ano.
  2. Determine a probabilidade de \( B_2 \) falhar no período de um ano condicional a que \( B_1\) falhe nesse período.
  3. Indique, justificando, se as bombas de extracção falham de modo independente no período de um ano.

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Um jardineiro efectua uma sementeira de um determinado número de sementes calibradas de uma espécie de plantas. Por experiência, o jardineiro sabe que cada semente não germina com probabilidade 0.2, independentemente do que acontece com as restantes sementes.

  1. Se o jardineiro usar 20 sementes, qual é a probabilidade de menos de 4 não germinarem?
  2. Qual é o menor número de sementes que o jardineiro deve semear para que, com probabilidade superior a \( 50\%\), pelo menos 3 sementes não germinem?

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

De uma caixa, contendo 2 bolas azuis e 3 bolas vermelhas, retira-se ao acaso uma bola e coloca-se numa segunda caixa que já contém 4 bolas azuis e 2 bolas vermelhas. De seguida, extrai-se ao acaso uma bola da segunda caixa.

  1. Qual é a probabilidade de extrair bolas da mesma cor das duas caixas?
  2. Determine a probabilidade de a bola extraída da segunda caixa ser vermelha.
  3. Se a bola extraída da segunda caixa é vermelha, qual é a probabilidade de se ter extraído da primeira caixa uma bola dessa mesma cor?

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 15 min
  • TEMPO MAXIMO DE RESOLUCAO: 30 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Um sistema de detecção de utilizações fraudulentas de cartões de crédito regista, em cada dia e para cada cartão, o número de concelhos em que cada cartão é usado e se movimenta quantias elevadas. Dados históricos indicam que \( 1\%\) das utilizações diárias são fraudulentas e que, de entre essas, em \( 30\% \) dos casos são movimentadas quantias elevadas e o cartão é utilizado em mais do que dois concelhos no mesmo dia. A probabilidade deste último acontecimento baixa para \( 1\%\) entre as utilizações legítimas.

  1. Calcule a probabilidade de, num qualquer dia, um cartão de crédito ter sido usado fraudulentamente sabendo que foi utilizado em mais do que dois concelhos e que movimentou quantias elevadas.
  2. Determine a probabilidade de ter ocorrido uma utilização fraudulenta de um cartão que não foi usado em mais do que dois concelhos ou não movimentou quantias elevadas num certo dia. Compare o resultado obtido com o da alínea anterior e comente.

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 5 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

O fornecedor de sementes \( F_1\) atesta que a probabilidade de germinação de cada uma das suas sementes é 0.95, enquanto que o fornecedor \( F_2\) garante que a probabilidade de cada uma das suas sementes não germinar é 0.1. Um agricultor adquiriu um pacote de sementes de \( F_1 \) e outro de \( F_2 \), contendo 50 e 30 sementes, respectivamente. Tendo havido germinação de uma semente, escolhida ao acaso entre as compradas pelo agricultor, qual é a probabilidade de ela ser proveniente do fornecedor \( F_2\)?

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 5 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

O controlo de qualidade de um fabricante de chips electrónicos é feito através de um teste que identifica correctamente os produtos defeituosos em \( 99\% \) dos casos, mas que também indica como defeituosos \( 5\% \) dos produtos em boas condições. Admitindo que \( 1\% \) dos chips fabricados têm defeitos e que o teste aplicado a um chip, escolhido ao acaso da produção, indicou o chip como sendo defeituoso, calcule a probabilidade de esse chip estar em boas condições.

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 5 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Um cliente de uma dada empresa combina a compra de uma remessa de 30 parafusos com a condição de devolvê-la se ao testar uma amostra de 3 parafusos, escolhidos ao acaso e sem reposição, não encontrar pelo menos dois em boas condições. É sabido que na encomenda remetida vão efectivamente 25 parafusos em boas condições, sendo os restantes defeituosos.

  1. Calcule a probabilidade de a encomenda ser devolvida e obtenha o desvio padrão do número de parafusos defeituosos existentes na amostra testada.
  2. Determine a probabilidade de o \( 2^o \) parafuso extraído ser defeituoso e verifique se esse valor coincide com o que se obteria caso a seleção da amostra de parafusos fosse feita com reposição.


Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Probabilidades e Estatística
  • ANO: 2
  • LINGUA: pt
  • AUTOR: Equipa de Probabilidades e Estatística
  • MATERIA PRINCIPAL: Conceitos Básicos de Probabilidades
  • DESCRICAO: Conceitos Básicos de Probabilidades
  • DIFICULDADE: *
  • TEMPO MEDIO DE RESOLUCAO: 5 min
  • TEMPO MAXIMO DE RESOLUCAO: 15 min
  • PALAVRAS CHAVE: conceitos básicos de probabilidades e estatística

Uma empresa financeira desenvolveu um modelo de forma a prever, sob determinadas condições macroeconómicas, a ocorrência de recessões económicas. O modelo faz previsões correctas quando ocorre recessão em \( 80\% \) dos casos, mas faz previsões incorrectas quando não ocorre recessão em \( 10\% \) dos casos. Dados históricos mostram que a probabilidade de ocorrência de recessão económica, nas condições de uso do modelo, é de 0.2. Supondo verificadas as condições de uso do modelo, calcule:

  1. A probabilidade de ocorrer recessão económica, sabendo que o modelo prevê a ocorrência desta.
  2. A probabilidade de ocorrer recessão económica ou o modelo prever a ocorrência de recessão económica.

Variáveis aleatórias

Distribuições conjuntas e complementos

Estatística

Amostragem e estimação pontual

Estimação por intervalos

Testes de hipóteses

Regressão linear simples