Diferenças entre edições de "Cálculo de Erro Quadrático Médio"

Fonte: My Solutions
Saltar para a navegação Saltar para a pesquisa
Linha 17: Linha 17:
 
</div>
 
</div>
  
Da análise da sua carteira de empréstimos a particulares com algum incumprimento de pagamento, uma instituição bancária concluiu que o número de meses que decorre até ao primeiro incumprimento de pagamento é modelado pela variável aleatória X com distribuição geométrica de parâmetro p, com p entre 0 e 1. Considere que (X1,...,Xn), n>=3 é uma amostra aleatória de X.Determine o erro quadrático médio do estimador /(T =\)\(\frac{\pmb{\sum_{i=1}^4ix_i}}{10}\)
+
Da análise da sua carteira de empréstimos a particulares com algum incumprimento de pagamento, uma instituição bancária concluiu que o número de meses que decorre até ao primeiro incumprimento de pagamento é modelado pela variável aleatória X com distribuição geométrica de parâmetro p, com p entre 0 e 1. Considere que (X1,...,Xn), n>=3 é uma amostra aleatória de X. Determine o erro quadrático médio do estimador \(T =\)\(\frac{\pmb{\sum_{i=1}^5ix_i}}{15}\) do valor esperado do número de meses até ao primeiro incumprimento de pagamento.
  
  

Revisão das 11h26min de 5 de julho de 2016

Metadata

Da análise da sua carteira de empréstimos a particulares com algum incumprimento de pagamento, uma instituição bancária concluiu que o número de meses que decorre até ao primeiro incumprimento de pagamento é modelado pela variável aleatória X com distribuição geométrica de parâmetro p, com p entre 0 e 1. Considere que (X1,...,Xn), n>=3 é uma amostra aleatória de X. Determine o erro quadrático médio do estimador T=5i=1ixi5i=1ixi15 do valor esperado do número de meses até ao primeiro incumprimento de pagamento.


A resposta correcta é: A)0.6187 , B)0.8268 , C)0.7100 , D)0.4299


Para obter o zip que contém as instâncias deste exercício clique aqui[1]

Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt