Diferenças entre edições de "Lançamento Horizontal de Duas Bolas"

Fonte: My Solutions
Saltar para a navegação Saltar para a pesquisa
Linha 88: Linha 88:
 
'''Respostas'''
 
'''Respostas'''
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
* \( h_{máx} \simeq 928.2\, m \)
+
* \( \vec{v_{A,c}} = (0 \vec{e_x} - 7 \vec{e_y} )\, m s^{-1} \)
* \( t_s \simeq 34.64\, s \)
+
* \( \vec{v_{B,c}} = (7 \vec{e_x} - 7 \vec{e_y} )\, m s^{-1} \)
 
</div>
 
</div>
 
</div>
 
</div>
Linha 98: Linha 98:
 
'''Respostas'''
 
'''Respostas'''
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
* \( h_{máx} \simeq 928.2\, m \)
+
* \( x_{A,f} = 5\, m \)
* \( t_s \simeq 34.64\, s \)
+
* \( y_{A,f} = 0\, m \)
 
</div>
 
</div>
 
</div>
 
</div>
Linha 108: Linha 108:
 
'''Respostas'''
 
'''Respostas'''
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
* \( h_{máx} \simeq 928.2\, m \)
+
* \( x_{B,f} \simeq 5,477\, m \)
* \( t_s \simeq 34.64\, s \)
+
* \( y_{B,f} = 0\, m \)
 
</div>
 
</div>
 
</div>
 
</div>
Linha 118: Linha 118:
 
'''Respostas'''
 
'''Respostas'''
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
* \( h_{máx} \simeq 928.2\, m \)
+
* As coordenadas de A sem a colisão são iguais às coordenadas de B com a colisão e vice-versa. Isto era de esperar uma vez que, numa colisão elástica de corpos com a mesma massa, as suas velocidades "trocam", trocando simplesmente assim o movimento das duas.
* \( t_s \simeq 34.64\, s \)
 
 
</div>
 
</div>
 
</div>
 
</div>

Revisão das 20h56min de 30 de agosto de 2015

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Física
  • DISCIPLINA: Mecânica e ondas
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Ana Mourão
  • MATERIA PRINCIPAL: Cinemática do Ponto Material
  • DESCRICAO: Lançamento Horizontal de Duas Bolas
  • DIFICULDADE: **
  • TEMPO MEDIO DE RESOLUCAO: 600 [s]
  • TEMPO MAXIMO DE RESOLUCAO: 1200 [s]
  • PALAVRAS CHAVE: Queda, Livre, Cinemática, Ponto, Material, Graves


Uma bola A é lançada de um altura h=3 m do chão e com uma velocidade inicial vo,A=7m/s ex. Considere que as coordenadas iniciais da bola A são: xo,A=0 m, yo,A=3 m. Uma outra bola B está situada num ponto a uma distância D=5m da bola A. Considere que as coordenadas iniciais da bola B são: x0,B=5 m, yo,B=3 m e que o módulo da aceleração gravítica à superfície da Terra é g=9,8 m/s 2. As bolas têm a mesma massa m.

  • Quanto tempo demora a bola A a chegar ao solo? Ignore a existência da bola B.

Respostas

  • tq0.782s
  • Calcule as coordenadas do ponto em que a bola A toca no chão. Ignore a existência da bola B.

Respostas

  • xA,q5,477m
  • yA,q=0m
  • E se a bola B for largada com velocidade inicial nula, vo=0 m/s ex+0 m/s ey, quanto tempo demora a chegar ao chão? Ignore a existência da bola A. Compare com o resultado obtido para o tempo de queda da bola A obtido anteriormente e justifique o resultado.

Respostas

  • tq0.782s
  • São iguais uma vez que as condições iniciais do movimento no eixo vertical são iguais e as bolas se encontram apenas sob acção da gravidade.
  • Calcule as coordenadas do ponto em que a bola B toca no chão. Ignore a existência da bola A.

Respostas

  • xB,q=5m
  • yB,q=0m
  • Se a bola A e a bola B forem largadas simultaneamente a que altura do solo se dá a colisão?

Respostas

  • yc=0.5m
  • Calcule a velocidade da bola A e a velocidade da bola B no instante antes da colisão.

Respostas

  • vA,c=(7ex7ey)ms1
  • vB,c=(0ex7ey)ms1
  • Calcule a velocidade da bola A e a velocidade da bola B no instante após a colisão, considerando a colisão elástica.

Respostas

  • vA,c=(0ex7ey)ms1
  • vB,c=(7ex7ey)ms1
  • Calcule as coordenadas em que a bola A toca no chão, após a colisão.

Respostas

  • xA,f=5m
  • yA,f=0m
  • Calcule as coordenadas em que a bola B toca no chão, após a colisão.

Respostas

  • xB,f5,477m
  • yB,f=0m
  • Compare as coordenadas dos pontos em que as bolas A e B tocam no chão após a colisão com as coordenadas dos pontos onde A e B tocam no chão na situação em que não há colisão (só é lançada uma bola).

Respostas

  • As coordenadas de A sem a colisão são iguais às coordenadas de B com a colisão e vice-versa. Isto era de esperar uma vez que, numa colisão elástica de corpos com a mesma massa, as suas velocidades "trocam", trocando simplesmente assim o movimento das duas.