Diferenças entre edições de "Superficies regioes"
Linha 4: | Linha 4: | ||
*CONTEXTO : Primeiro ciclo universitário | *CONTEXTO : Primeiro ciclo universitário | ||
*AREA: Matemática | *AREA: Matemática | ||
− | *DISCIPLINA: Calculo | + | *DISCIPLINA: Calculo Diferencial e Integral 2 |
*ANO: 1 | *ANO: 1 | ||
*LINGUA: pt | *LINGUA: pt | ||
− | *AUTOR: | + | *AUTOR: Ana Moura Santos e Miguel Dziergwa |
− | *MATERIA PRINCIPAL: | + | *MATERIA PRINCIPAL: Teorema da Divergência e teorema de Stokes |
*DESCRICAO: | *DESCRICAO: | ||
*DIFICULDADE: easy | *DIFICULDADE: easy | ||
*TEMPO MEDIO DE RESOLUCAO: 15 mn | *TEMPO MEDIO DE RESOLUCAO: 15 mn | ||
*TEMPO MAXIMO DE RESOLUCAO: 30 mn | *TEMPO MAXIMO DE RESOLUCAO: 30 mn | ||
− | *PALAVRAS CHAVE: | + | *PALAVRAS CHAVE: fluxo do rotacional, fluxo do campo, trabalho ao longo de uma curva, integral da divergência, teorema da divergência, teorema de Stokes |
</div> | </div> | ||
</div> | </div> | ||
Linha 19: | Linha 19: | ||
Seja S a superfície \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\text{x}^2+\text{y}^2+\text{z}^2=1\text{,}\text{z}>0\right\}\) e \(\pmb{\text{F}}:\mathbb{R}^3\longrightarrow\mathbb{R}^3\) uma função de classe \(\text{C}^1\) tal que \(\int\int_{\text{S}}(\text{rot}\pmb{\text{G}}).\pmb{\text{n}}\text{=}\text{2$\pi$}\) onde \(\pmb{\text{G}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)=\frac{\pmb{\text{F}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)}{\text{x}^2+\text{y}^2+(\text{z}-2)^2}\) e \(\pmb{\text{n}}\) é a normal unitária com terceira componente sempre positiva. Então podemos garantir que: | Seja S a superfície \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\text{x}^2+\text{y}^2+\text{z}^2=1\text{,}\text{z}>0\right\}\) e \(\pmb{\text{F}}:\mathbb{R}^3\longrightarrow\mathbb{R}^3\) uma função de classe \(\text{C}^1\) tal que \(\int\int_{\text{S}}(\text{rot}\pmb{\text{G}}).\pmb{\text{n}}\text{=}\text{2$\pi$}\) onde \(\pmb{\text{G}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)=\frac{\pmb{\text{F}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)}{\text{x}^2+\text{y}^2+(\text{z}-2)^2}\) e \(\pmb{\text{n}}\) é a normal unitária com terceira componente sempre positiva. Então podemos garantir que: | ||
− | A)\(\int\int_{\text{S}_1}(\text{rot}\pmb{\text{G}}).\pmb{\text{n}}\text{=}2\pi\), onde \(\text{S}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\text{x}^2+\text{y}^2+\frac{\text{z}^2}{9}=1\text{,}\text{z}<0\right\}\) e \(\pmb{\text{n}}\) é a normal unitária com terceira componente sempre positiva. | + | A) \(\int\int_{\text{S}_1}(\text{rot}\pmb{\text{G}}).\pmb{\text{n}}\text{=}2\pi\), onde \(\text{S}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\text{x}^2+\text{y}^2+\frac{\text{z}^2}{9}=1\text{,}\text{z}<0\right\}\) e \(\pmb{\text{n}}\) é a normal unitária com terceira componente sempre positiva. |
− | B)\(\text{$\oint$}_{\text{C}_1}\text{W}_{\pmb{\text{G}}}\text{=}2\pi\), onde \(\text{C}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\text{y}^2+\frac{\text{z}^2}{9}=1\text{,}\text{x}=0\right\}\) percorrida no sentido direto quando observada do semi-eixo positivo dos xx. | + | B) \(\text{$\oint$}_{\text{C}_1}\text{W}_{\pmb{\text{G}}}\text{=}2\pi\), onde \(\text{C}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\text{y}^2+\frac{\text{z}^2}{9}=1\text{,}\text{x}=0\right\}\) percorrida no sentido direto quando observada do semi-eixo positivo dos xx. |
− | C)\(\int\int_{\text{S}_1}\pmb{\text{G}}.\pmb{\text{n}}\text{=}-4\pi\), onde \(\text{S}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\frac{\text{x}^2}{9}+\text{y}^2+\text{z}^2=1\right\}\) e \(\pmb{\text{n}}\) é a normal unitária interior. | + | C) \(\int\int_{\text{S}_1}\pmb{\text{G}}.\pmb{\text{n}}\text{=}-4\pi\), onde \(\text{S}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\frac{\text{x}^2}{9}+\text{y}^2+\text{z}^2=1\right\}\) e \(\pmb{\text{n}}\) é a normal unitária interior. |
− | D)\(\int\int\int_{\text{V}_1}\text{div}\pmb{\text{G}}\text{ dx}\text{dy}\text{dz}\text{=}-2\pi\), onde \(\text{V}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\frac{\text{x}^2}{9}+\text{y}^2+\text{z}^2\leq1\right\}\). | + | D) \(\int\int\int_{\text{V}_1}\text{div}\pmb{\text{G}}\text{ dx}\text{dy}\text{dz}\text{=}-2\pi\), onde \(\text{V}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\frac{\text{x}^2}{9}+\text{y}^2+\text{z}^2\leq1\right\}\). |
− | E)Nenhuma das anteriores | + | E) Nenhuma das anteriores |
Para obter o zip que contém as instâncias deste exercício clique aqui(curvasSupRegioes) | Para obter o zip que contém as instâncias deste exercício clique aqui(curvasSupRegioes) | ||
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt | Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt |
Revisão das 16h16min de 26 de março de 2018
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Calculo Diferencial e Integral 2
- ANO: 1
- LINGUA: pt
- AUTOR: Ana Moura Santos e Miguel Dziergwa
- MATERIA PRINCIPAL: Teorema da Divergência e teorema de Stokes
- DESCRICAO:
- DIFICULDADE: easy
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 30 mn
- PALAVRAS CHAVE: fluxo do rotacional, fluxo do campo, trabalho ao longo de uma curva, integral da divergência, teorema da divergência, teorema de Stokes
Seja S a superfície \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\text{x}^2+\text{y}^2+\text{z}^2=1\text{,}\text{z}>0\right\}\) e \(\pmb{\text{F}}:\mathbb{R}^3\longrightarrow\mathbb{R}^3\) uma função de classe \(\text{C}^1\) tal que \(\int\int_{\text{S}}(\text{rot}\pmb{\text{G}}).\pmb{\text{n}}\text{=}\text{2$\pi$}\) onde \(\pmb{\text{G}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)=\frac{\pmb{\text{F}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)}{\text{x}^2+\text{y}^2+(\text{z}-2)^2}\) e \(\pmb{\text{n}}\) é a normal unitária com terceira componente sempre positiva. Então podemos garantir que:
A) \(\int\int_{\text{S}_1}(\text{rot}\pmb{\text{G}}).\pmb{\text{n}}\text{=}2\pi\), onde \(\text{S}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\text{x}^2+\text{y}^2+\frac{\text{z}^2}{9}=1\text{,}\text{z}<0\right\}\) e \(\pmb{\text{n}}\) é a normal unitária com terceira componente sempre positiva.
B) \(\text{$\oint$}_{\text{C}_1}\text{W}_{\pmb{\text{G}}}\text{=}2\pi\), onde \(\text{C}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\text{y}^2+\frac{\text{z}^2}{9}=1\text{,}\text{x}=0\right\}\) percorrida no sentido direto quando observada do semi-eixo positivo dos xx.
C) \(\int\int_{\text{S}_1}\pmb{\text{G}}.\pmb{\text{n}}\text{=}-4\pi\), onde \(\text{S}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\frac{\text{x}^2}{9}+\text{y}^2+\text{z}^2=1\right\}\) e \(\pmb{\text{n}}\) é a normal unitária interior.
D) \(\int\int\int_{\text{V}_1}\text{div}\pmb{\text{G}}\text{ dx}\text{dy}\text{dz}\text{=}-2\pi\), onde \(\text{V}_1\) é \(\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\in\mathbb{R}^3\text{:}\frac{\text{x}^2}{9}+\text{y}^2+\text{z}^2\leq1\right\}\).
E) Nenhuma das anteriores
Para obter o zip que contém as instâncias deste exercício clique aqui(curvasSupRegioes)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt