Diferenças entre edições de "Equação do plano tangente"
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...") |
|||
Linha 17: | Linha 17: | ||
</div> | </div> | ||
− | Na figura seguinte pode ver-se o gráfico da função \(f\)\(\left(\begin{array}{c}x\\y\\\end{array}\right)\)=\(e^{\sqrt{-x^2-y^2+9}}\) para \( -1 \leq x,y \leq 1 \) e o plano tangente ao gráfico da função no ponto | + | Na figura seguinte pode ver-se o gráfico da função \(f\)\(\left(\begin{array}{c}x\\y\\\end{array}\right)\)=\(e^{\sqrt{-x^2-y^2+9}}\) para \( -1 \leq x,y \leq 1 \) e o plano tangente ao gráfico da função no ponto correspondente a \(\left(\begin{array}{c}\frac{1}{2}\\-\frac{1}{2}\\\end{array}\right)\) |
[[File:Plano.gif]] | [[File:Plano.gif]] |
Revisão das 10h07min de 2 de setembro de 2016
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Calculo diferencial e integral 2
- ANO: 1
- LINGUA: pt
- AUTOR: Equipa Calculo diferencial e integral 2
- MATERIA PRINCIPAL:
- DESCRICAO:
- DIFICULDADE: easy
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 30 mn
- PALAVRAS CHAVE:
Na figura seguinte pode ver-se o gráfico da função \(f\)\(\left(\begin{array}{c}x\\y\\\end{array}\right)\)=\(e^{\sqrt{-x^2-y^2+9}}\) para \( -1 \leq x,y \leq 1 \) e o plano tangente ao gráfico da função no ponto correspondente a \(\left(\begin{array}{c}\frac{1}{2}\\-\frac{1}{2}\\\end{array}\right)\)
Uma equação cartesiana do plano tangente é dada por:
A)\(-\frac{e^{\sqrt{\frac{17}{2}}}\left(x-\frac{1}{2}\right)}{\sqrt{34}}+\frac{e^{\sqrt{\frac{17}{2}}}\left(y+\frac{1}{2}\right)}{\sqrt{34}}-z+e^{\sqrt{\frac{17}{2}}}\text{=0}\)
B)\(-\frac{e^{\sqrt{\frac{17}{2}}}\left(x-\frac{1}{2}\right)}{\sqrt{34}}+\frac{e^{\sqrt{\frac{17}{2}}}\left(y+\frac{1}{2}\right)}{\sqrt{34}}-z-e^{\sqrt{\frac{17}{2}}}\text{=0}\)
C)\(\frac{e^{\sqrt{\frac{17}{2}}}\left(x+\frac{1}{2}\right)}{\sqrt{34}}-\frac{e^{\sqrt{\frac{17}{2}}}\left(y-\frac{1}{2}\right)}{\sqrt{34}}-z+e^{\sqrt{\frac{17}{2}}}\text{=0}\)
D)\(\frac{e^{\sqrt{\frac{17}{2}}}(x-1)}{\sqrt{34}}-\frac{e^{\sqrt{\frac{17}{2}}}(y+1)}{\sqrt{34}}-z+e^{\sqrt{\frac{17}{2}}}\text{=0}\)
Para obter o zip que contém as instâncias deste exercício clique aqui(planoSimplificado)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt