Diferenças entre edições de "Teorema das matrizes invertíveis e MEG"
Linha 8: | Linha 8: | ||
*LINGUA: pt | *LINGUA: pt | ||
*AUTOR: Ana Moura Santos e Miguel Dziergwa | *AUTOR: Ana Moura Santos e Miguel Dziergwa | ||
− | *MATERIA PRINCIPAL: | + | *MATERIA PRINCIPAL: Inversão de matrizes |
*DESCRICAO: equivalências com base no teorema das matrizes invertíveis | *DESCRICAO: equivalências com base no teorema das matrizes invertíveis | ||
*DIFICULDADE: ** | *DIFICULDADE: ** |
Revisão das 10h13min de 4 de outubro de 2016
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Álgebra Linear
- ANO: 1
- LINGUA: pt
- AUTOR: Ana Moura Santos e Miguel Dziergwa
- MATERIA PRINCIPAL: Inversão de matrizes
- DESCRICAO: equivalências com base no teorema das matrizes invertíveis
- DIFICULDADE: **
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 30 mn
- PALAVRAS CHAVE: teorema das matrizes invertíveis, matriz quadrada, matriz inversa, matrizes elementares, factorização, característica, número de pivots
Sejam \( A_{n\times n} \) uma matriz quadrada e, caso exista, \(A^{-1}\) a sua inversa. Seleccione todas as afirmações correctas.
A) existe a matriz inversa \(A^{-1}\) sse no final do Método de Eliminação de Gauss \(A\) não tem linhas nulas;
B) \(A\) não admite uma factorização na forma de produto de matrizes elementares sse \(A\) não é invertível;
C) a característica de \(A\) é menor que \(n\) sse \(A\) admite uma factorização na forma de produto de matrizes elementares;
D) \(A^{-1}\) admite uma factorização na forma de produto de matrizes elementares sse o número de pivots de \(A^{-1}\) é igual a \(n\);
E) Nenhuma das anteriores
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt