Integral triplo sobre pirâmide
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Calculo diferencial e integral 2
- ANO: 1
- LINGUA: pt
- AUTOR: Equipa Calculo diferencial e integral 2
- MATERIA PRINCIPAL:
- DESCRICAO:
- DIFICULDADE: easy
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 30 mn
- PALAVRAS CHAVE:
Sendo \(f\) integrável em \( \mathbb{R^3} \) com suporte em \(A=\left\{\left(\begin{array}{c}x\\y\\z\\\end{array}\right):x,y,z\geq0,\frac{x}{2}+\frac{7y}{2}+4z\leq\frac{3}{2}\right\}\) então o integral de \(f\) sobre \(A\) pode escrever-se como os seguintes integrais iterados:
A)\(\int_0^{\frac{3}{7}}\int_0^{2\left(\frac{3}{2}-\frac{7y}{2}\right)}\int_0^{\frac{1}{4}\left(-\frac{x}{2}-\frac{7y}{2}+\frac{3}{2}\right)}f\left(\begin{array}{c}x\\y\\z\\\end{array}\right)dzdxdy\)
B)\(\int_0^{\frac{3}{7}}\int_0^{\frac{1}{4}\left(-\frac{x}{2}-\frac{7y}{2}+\frac{3}{2}\right)}\int_0^{2\left(\frac{3}{2}-\frac{7y}{2}\right)}f\left(\begin{array}{c}x\\y\\z\\\end{array}\right)dzdxdy\)
C)\(\int_0^3\int_0^{\frac{1}{4}\left(\frac{3}{2}-\frac{x}{2}\right)}\int_0^{-\frac{x}{2}-4z+\frac{3}{2}}f\left(\begin{array}{c}x\\y\\z\\\end{array}\right)dydzdx\)
D)\(\int_0^{\frac{1}{4}\left(-\frac{x}{2}-\frac{7y}{2}+\frac{3}{2}\right)}\int_0^{2\left(\frac{3}{2}-\frac{7y}{2}\right)}\int_0^{\frac{3}{7}}f\left(\begin{array}{c}x\\y\\z\\\end{array}\right)dzdxdy\)
Para obter o zip que contém as instâncias deste exercício clique aqui(intTripPir)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt