Normal ao plano tangente
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Calculo diferencial e integral 2
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Equipa Calculo diferencial e integral 2
 - MATERIA PRINCIPAL:
 - DESCRICAO:
 - DIFICULDADE: easy
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE:
 
Na figura abaixo pode ver-se o gráfico da função \(\text{f(x,y)=}-\sin(xy)\) juntamente com o plano tangente ao gráfico no ponto correspondente a \(\left(-\frac{1}{2},-\frac{\pi}{2}\right)\) e a normal ás duas superfícies nesse ponto.
A reta normal ao plano tangente e que passa no ponto pode ser dada parametricamente por:
A)\(\text{(x,y,z)=}\left(\frac{\pi t}{2\sqrt{2}}-\frac{1}{2},\frac{t}{2\sqrt{2}}-\frac{\pi}{2},-t-\frac{1}{\sqrt{2}}\right)\)
B)\(\text{(x,y,z)=}\left(\left(1-\frac{3}{2\sqrt{2}}\right)t-\frac{1}{2},-\frac{\pi t}{2\sqrt{2}}-\frac{\pi}{2},t-\frac{1}{\sqrt{2}}\right)\)
C)\(\text{(x,y,z)=}\left(\left(1+\frac{\pi}{8\sqrt{2}}\right)t-\frac{1}{2},\sqrt{2}t-\frac{\pi}{2},t-\frac{1}{\sqrt{2}}\right)\)
D)\(\text{(x,y,z)=}\left(\frac{\pi t}{2\sqrt{2}}-\frac{1}{2},\frac{t}{2\sqrt{2}}-\frac{\pi}{2},-t-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)\)
Para obter o zip que contém as instâncias deste exercício clique aqui(normalSimplificado)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt
