Derivadas de funções holomorfas
Saltar para a navegação
Saltar para a pesquisa
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Análise Complexa e Equações Diferenciais
- ANO: 2
- LINGUA: pt
- AUTOR: Rui Miguel Saramago
- MATERIA PRINCIPAL: Funções holomorfas
- DESCRICAO: Determinar derivadas de funções holomorfas a partir de condições dadas
- DIFICULDADE: **
- TEMPO MEDIO DE RESOLUCAO: 10 mn
- TEMPO MAXIMO DE RESOLUCAO: 15 mn
- PALAVRAS CHAVE: função holomorfa
Seja \( f = u + iv \) uma função holomorfa em \(\mathbb{C} \) tal que \( f(0)=i \) e \( u(x,y)=-e^y sen(x) \).
Então \(f'(0)\) é igual a
A) -1
B) 0
C) -i
D) 1