Movimento Oscilatório

Fonte: My Solutions
Saltar para a navegação Saltar para a pesquisa

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Física
  • DISCIPLINA: Mecânica e ondas
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Pedro Brogueira
  • MATERIA PRINCIPAL: Oscilações Harmónicas Simples / Lagrangeanos
  • DESCRICAO: Movimento Oscilatório
  • DIFICULDADE: ****
  • TEMPO MEDIO DE RESOLUCAO: 1500 [s]
  • TEMPO MAXIMO DE RESOLUCAO: 1800 [s]
  • PALAVRAS CHAVE: Lagrangeano, Equação do movimento, Oscilações, Frequência, Momento de Inércia, Pendulo Físico
Um pêndulo.

Considere o pêndulo representado na figura constituído por um disco de massa M=1 kg e raio R=10 cm, que roda livremente em torno do seu centro de massa e ao qual se encontra rigidamente fixado na periferia uma haste de massa desprezável. No outro extremo da haste encontra-se uma esfera de massa m=0.2 kg e dimensões desprezáveis. A distância entre o centro do disco e a massa m é l=1 m. O momento de inércia do disco em relação ao seu centro de massa é dado por ICM=12MR2.

Dados:

g10 m.s2


  • Identifique os graus de liberdade e escreva o lagrangeano do sistema.

Respostas

O sistema tem um grau de liberdade descrito pela coordenada generalizada θ.

L=12I(dθdt)2+mglcosθ

com,

I=12MR2+ml2

  • Obtenha a(s) equação(ões) do movimento. Nota: Caso não consiga escrever o lagrangeano utilize qualquer outro método que saiba para chegar à(s) equação(ões) do movimento.

Respostas

d2θdt2+mglIsinθ=0

Para pequenas oscilações sinθθ

d2θdt2+mglIθ=0

  • Qual é a frequência própria do movimento na aproximação de pequenas oscilações?

Respostas

ωmglI3.12 rad.s1

  • Sabendo que o pêndulo foi libertado de uma posição que faz 3º com a vertical sem velocidade inicial, determine a solução da equação de movimento.

Respostas

Para pequenas oscilações:

θ(t)=pi60cosωt

0.0524cos3.12t rad